

USB

Dynamic Industrial Interface

V 2.0.1.1

A Universal

Application Programming Interface

To

Data Acquisition Products

Users Manual

Design & Implementation by

Decision Computer International Company

2010/04/20

No parts of this documentation may be reproduced or transmitted in any form,

by any means (electronic, photocopying, recording, or otherwise) without

the prior written permission of Decision Computer International Company.

 2

Contents

1. Introduction .. 3

2. Features ... 4

3. Device Type definition .. 5

4. Data Types of Function calls... 6

5. Functions to open and close Devices ..7

6. Functions for digital input/output ...10

7. Functions for reset hardware device ...16

8. Functions for analog input/output ..17

9. Functions for watch dog …………..18

10. Using USBDII with different programming language ...20

10.1. C++... 20

10.2 Visual Basic ..20

11. Technical support and Feedback ... 20

12. Release note…………………….. ... 21

 3

1. Introduction

This document provides the USB Dynamic Industrial Interface Specifications, including all function calls,

and operating procedures.

Disclaimer:

Decision Computer International Company (DECISION) cannot take responsibility for consequential

damages caused by using this software. In no event shall DECISION be liable for any damages

whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of

business information, or any other pecuniary loss) arising out of the use of or inability to use this

product, even if we have been advised of the possibility of such damages.

Trademark Acknowledgments:

Windows 98, Windows ME, Windows 2000, Windows XP, Windows 7, Visual Basic, Visual C++ are registered

 4

trademarks of Microsoft Corporation.

2. Features

The USB Dynamic Industrial Interface (USBDII) was created to provide a standard way to access the

functionality provided by all USB data acquisition products. Specifically, the USBDII provides the following

features:

 · Platform-independent

The library is compatible under Windows 98, Windows ME, Windows 2000, windows XP, Vista, and Win7. The

compatibility under these operation systems guarantees that programs written for either operating

system will work unchanged on the other, even without recompilation.

 · Abstracts Card Functionality from Card Design

The interface concentrates on a card’s functionality and hides the user from having to know specifics

about the card design, for example, which port needs to be accessed in order to access specific

functionality. All details of the card implementation are hidden from the user.

 · Multiple Device Support

You could access device by its name or by its information (device type, id index).

 · Programming Language Independent

The library provides a language independent way to access the USB industrial I/O cards, by using a

Dynamic-Link-Library architecture.

 5

3. Device Type Definition

Below are names for device types and its' corresponding defined value:

USB_16PIO 0x01 // USB 16 Channel Photo Input / 16 Channel Photo Output Board

USB_LABKIT 0x02 // USB LABKIT

USB_16PR 0x03 // USB 16 Channel Photo Input / 16 Channel Relay Output Board

USB_STARTER 0x04 // USB STARTER

USB_8PR 0x06 // USB 8 Channel Photo Input / 8 Channel Relay Output Board

USB_4PR 0x07 // USB 4 Channel Photo Input / 4 Channel Relay Output Board

USB_8PI 0x08 // USB 8 Channel Photo Input Board

USB_8RO 0x09 // USB 8 Channel Relay Output Board

USB_16PI 0x0A // USB 16 Channel Photo Input Board

USB_16RO 0x0B // USB 16 Channel Relay Output Board

USB_32PI 0x0C // USB 32 Channel Photo Input Board

USB_32RO 0x0D // USB 32 Channel Relay Output Board

USB_32IND 0x0E // USB Industry Board

 6

4. Data Types of Function calls

Since the USBDII was developed in the C++ language, some data types used may not be present in the

programming language you want to use. Please find the following data type conversion table for your

convenience:

HANDLE An opaque 32-bit integer

BYTE A 8-bit unsigned integer

BOOL A 32-bit integer, either 0 (FALSE) or 1 (TRUE)

DWORD A 32-bit unsigned integer

HWND A 32-bit integer representing a valid handle to a Window

LPTSTR A 32-bit flat pointer to a zero terminated string

LPBOOL A 32-bit flat pointer to a variable of type BOOL

LPBYTE A 32-bit flat pointer to a variable of type BYTE

LPDWORD A 32-bit flat pointer to a variable of type DWORD

Also note that the DLL employs the Standard Call (Pascal) calling mechanism, which is used for all system.

USBDII as well and is compatible with VB, VC, Delphi, .NET, and notice the variable with same type name may

have different define in different program language. For example, in Visual Basic 6, the width of Integer is 16 bits

and the width of Long is 32 bits, but in Visual Basic.Net, the width of Integer becomes 32 bits and the width of

Long becomes 64 bits. If you declare variable with different width from our define, it may cause some run-time

error.

 7

5. Functions to open and close Devices

hid_OpenDevice

This function opens a device for further access by USB.

Declaration

HANDLE hid_OpenDevice (DWORD device_type,

DWORD device_id);

Parameters

device_type The type of the device to open.

device_id Device's id on the Board.

 For more information, please see “Device Type Table & ID Table” following below.

Return value

A valid handle representing the device, or INVALID_HANDLE_VALUE (-1) if an error occurred.

For USB_STARTER, there is no ID selection and device_id = 0

Example

HANDLE hDevice = hid_OpenDevice(Device Type, Device Index);

if (hDevice == INVALID_HANDLE_VALUE)

{

MessageBox (NULL,“Open Failed!“,“Error“,MB_OK);

}

hid_CloseDevice

This function closes a device by USB.

Declaration

BOOL hid_CloseDevice (HANDLE hDevice)

Parameters hDevice A valid device handle.

Return value

TRUE if successful, FALSE otherwise.

Example

hid_CloseDevice(hDevice);

 8

com_OpenDevice

This function opens a device for further access by Serial Port.

Declaration

HANDLE com_OpenDevice (DWORD device_type,

DWORD device_id,

DWORD port_num);

Parameters

device_type The type of the device to open.

device_id Device's id on the board.

 For more information, please see “Device Type Table & ID Table” following below.

port_num Com Port Num to open.

Return value

A valid handle representing the device, or INVALID_HANDLE_VALUE (-1) if an error occurred.

Example

HANDLE hDevice = com_OpenDevice(Device Type, Device Index, 1);

if (hDevice == INVALID_HANDLE_VALUE)

MessageBox (NULL,“Open Failed!“,“Error“,MB_OK);

 9

com_CloseDevice

This function closes a device by Serial Port.

Declaration

BOOL com_CloseDevice(HANDLE hDevice)

Parameters hDevice A valid device handle.

Return value

TRUE if successful, FALSE otherwise.

Example

com_CloseDevice(hDevice);

Remarks

Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LABKIT,

USB_STARTER, USB_8PR are not supported by serial communication.

Device Type Table

Product device_type

USB_16PIO 0x01

USB_LABKIT 0x02

USB_16PR 0x03

USB_STARTER 0x04

USB_8PR 0x06

USB_4PR 0x07

USB_8PI 0x08

USB_8RO 0x09

USB_16PI 0x0A

USB_16RO 0x0B

USB_32PI 0x0C

USB_32RO 0x0D

USB_IND 0x0E

 10

Device ID Table

(Switch Setting on the Device Board)

Switch Setting device_id

1, 2, 3, 4 OFF 0

2, 3, 4 OFF, 1 ON 1

1, 3, 4 OFF, 2 ON 2

3, 4 OFF, 1, 2 ON 3

1, 2, 4 OFF, 3 ON 4

2, 4 OFF, 1, 3 ON 5

1, 4 OFF, 2, 3 ON 6

4 OFF, 2, 3, 4 ON 7

1, 2, 3 OFF, 4 ON 8

2, 3 OFF, 1, 4 ON 9

1, 3 OFF, 2, 4 ON 10

3 OFF, 1, 2, 4 ON 11

1, 2 OFF, 3, 4 ON 12

2 OFF, 1, 3, 4 ON 13

1 OFF, 2, 3, 4 ON 14

1, 2, 3, 4 ON Firmware update

 11

6. Functions for digital input/output

hid_SetDigitalByte

This function sets or clears a byte on a digital output line by USB.

Declaration

BOOL hid_SetDigitalByte (HANDLE hDevice,

DWORD dwPort,

BYTE byPortState

);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice dwPort The index of the port on the card to manipulate. The first port has index 0.

 For more information, please see “Write Address Table” following below. byPortState The new state of the port

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = hid_OpenDevice(0x01,0);

if (hDevice != INVALID_HANDLE_VALUE)

{

hid_SetDigitalByte(hDevice, 0, 0xFF); // set’s all bits on the first port

hid_CloseDevice(hDevice);

}

 12

com_SetDigitalByte

This function sets or clears a byte on a digital output line by Serial Port.

Declaration

BOOL com_SetDigitalByte (HANDLE hDevice,

DWORD dwPort,

BYTE byPortState

);

Parameters hDevice A valid device handle, previously obtained from com_OpenDevice dwPort The index of the port on the card to manipulate. The first port has index 0.

 For more information, please see “Write Address Table” following below. byPortState The new state of the port

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = com_OpenDevice(0x01,0);

if (hDevice != INVALID_HANDLE_VALUE)

{

com_SetDigitalByte(hDevice, 0, 0xFF); // set’s all bits on the first port

com_CloseDevice(hDevice);

}

Remarks

Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LABKIT,

USB_STARTER, USB_8PR are not supported by serial communication.

 13

Write Address Table

Product dwPort Content

USB_16PIO 0x02 OUT07 to OUT00

 0x03 OUT15 to OUT08

USB_LABKIT 0x03 P1D07 to P1D00

USB_STARTER 0x03 P1D07 to P1D00

USB_16PR 0x02 OUT07 to OUT00

 0x03 OUT15 to OUT08

USB_8PR 0x01 OUT07 to OUT00

 0x02 DIO7 to DIO0

 0x03 DIO15 to DIO8

USB_4PR 0x02 OUT03 to OUT00

USB_8RO 0x02 OUT07 to OUT00

USB_16RO 0x02 OUT07 to OUT00

 0x03 OUT15 to OUT08

USB_32RO 0x00 OUT07 to OUT00

 0x01 OUT15 to OUT08

 0x02 OUT23 to OUT16

 0x03 OUT31 to OUT24

USB_IND 0x00 Port 0

 0x01 Port 1

 0x02 Port 2

 0x03 Port 3

 0x04 Port 4

 0x05 Port 5

 0x06 Port 6

 0x07 Port 7

 0x08 DIO

 0x0D IOCONFIG

 14

hid_GetDigitalByte

This function reads a complete byte from a digital input port of a device by USB.

Declaration

BOOL hid_GetDigitalByte (HANDLE hDevice,

DWORD dwPort,

LPBYTE lpbyPortState

);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice dwPort The index of the port on the card to manipulate. The first port has index 0.

 For more information, please see “Read Address Table” following below. lpbyPortState A pointer to a variable of type BYTE receiving the new state of the port

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER – The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = hid_OpenDevice(0x01,0);

if (hDevice != INVALID_HANDLE_VALUE)

{

hid_GetDigitalByte(hDevice, 0, &byState); // reads the state of the first input port

hid_CloseDevice(hDevice);

}

 15

com_GetDigitalByte

This function reads a complete byte from a digital input port of a device by Serial Port.

Declaration

BOOL com_GetDigitalByte (HANDLE hDevice,

DWORD dwPort,

LPBYTE lpbyPortState

);

Parameters hDevice A valid device handle, previously obtained from com_OpenDevice dwPort The index of the port on the card to manipulate. The first port has index 0.

 For more information, please see “Read Address Table” following below. lpbyPortState A pointer to a variable of type BYTE receiving the new state of the port

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER – The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = com_OpenDevice(0x01,0);

if (hDevice != INVALID_HANDLE_VALUE)

{

com_GetDigitalByte(hDevice, 0, &byState); // reads the state of the first input port

com_CloseDevice(hDevice);

}

Remarks

Please see “Serial_Communication.pdf” to set hardware for serial communication, and USB_LABKIT,

USB_STARTER, USB_8PR are not supported by serial communication.

 16

Read Address Table

Product dwPort Content

USB_16PIO 0x00 IN07 to IN00

 0x01 IN15 to IN08

USB_LABKIT 0x02 P0D07 to P0D00

USB_STARTER 0x02 P0D07 to P0D00

USB_16PR 0x00 IN07 to IN00

 0x01 IN15 to IN08

USB_8PR 0x00 IN07 to IN00

 0x02 DIO7 to DIO0

 0x03 DIO15 to DIO8

 0x10 JP9/JP10 Settings

USB_4PR 0x00 IN03 to IN00

USB_8PI 0x00 IN07 to IN00

USB_16PI 0x00 IN07 to IN00

 0x01 IN15 to IN08

USB_32PI 0x00 IN07 to IN00

 0x01 IN15 to IN08

 0x02 IN23 to IN16

 0x03 IN31 to IN24

USB_IND 0x00 Port 0

 0x01 Port 1

 0x02 Port 2

 0x03 Port 3

 0x04 Port 4

 0x05 Port 5

 0x06 Port 6

 0x07 Port 7

 0x08 DIO

 0x0D IOCONFIG

 17

Remarks

In USB_8PR, we provide 2 digital ports for user to define either as input or output. It can be defined by

Jumper 10 and Jumper 11 on the board. And we can use hid_GetDigitalByte / com_GetDigitalByte

function to read Jumper State to determine witch port is either input or output.

hid_GetDigitalByte(hDevice, 0x10, &byState); // or use com_GetDigitalByte for serial communication

When JP9 is closed, DIO7 - DIO0 is for Input. The fifth bit of byState is 0

When JP9 is opened, DIO7 - DIO0 is for Output. The fifth bit of byState is 1

When JP10 is closed, DIO15 – DIO8 is for Input. The sixth bit of byState is 0

When JP10 is opened, DIO15 – DIO8 is for Output. The sixth bit of byState is 1

7. Functions for reset hardware device

hid_ResetHW

This function directly resets the hardware device by USB. And all channels on the board will load default value. If

you need to control the device again, please use hid_open to get the handle again.

Declaration

BOOL hid_ResetHW(HANDLE hDevice)

Parameters hDevice A valid device handle.

Return value

TRUE if successful, FALSE otherwise.

Example

hid_ResetHW (hDevice);

 18

com_ResetHW

This function directly resets the hardware device by Serial Port. And all channels on the board will load default

value.

Declaration

BOOL com_ResetHW(HANDLE hDevice)

Parameters hDevice A valid device handle.

Return value

TRUE if successful, FALSE otherwise.

Example

com_ResetHW(hDevice);

 19

8. Functions for analog input/output

hid_GetAnalogChannel

This function reads a complete word from an analog input port of a device by USB.

Declaration

BOOL hid_GetAnalogChannel (HANDLE hDevice,

DWORD dwPort,

LPDWORD lpdwPortState

);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice dwPort The index of the port on the card to manipulate. The first port has index 0. lpdwPortState A pointer to a variable of type DWORD receiving the new state of the port

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = hid_OpenDevice(0x02,0); // USB_LABKIT

if (hDevice != INVALID_HANDLE_VALUE)

{

hid_ hid_GetAnalogChannel (hDevice, 0, &dwState); // reads the state of the first analog input port

hid_CloseDevice (hDevice);

}

Remarks

This function now only enable in USB_LABKIT and USB_STARTER device. The range of dwPort is from 0~7.

 20

9. Functions for Watch dog

hid_SetWD

This function sets time interval for Watch Dog.

Declaration

BOOL hid_SetWD(HANDLE hDevice,

BYTE byMode);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice byMode Time interval for Watch Dog (Value 1~5 as 1/5/10/30/60 seconds, default as 10s)

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

hid_EnableWD

This function enables/disables Watch Dog.

Declaration

BOOL hid_EnableWD(HANDLE hDevice,

BOOL bEnabled);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice bEnabled Enable/disable watch dog.

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

 21

hid_ClearWD

This function cleans and reloads Watch Dog.

Declaration

BOOL hid_ClearWD(HANDLE hDevice);

Parameters hDevice A valid device handle, previously obtained from hid_OpenDeviceDevice

Return value

TRUE if successful, FALSE otherwise.

If an error occurred, GetLastError() may return the following values:

ERROR_INVALID_PARAMETER - The handle passed was invalid, or the port number was out of range

for the device selected.

Example

HANDLE hDevice = hid_OpenDevice(0x01,0); // USB_16PIO

if (hDevice != INVALID_HANDLE_VALUE)

{

hid_SetWD(hDevice, 5); // set time interval as 60s

hid_ EnableWD(hDevice, TRUE); // enable the watchdog

}

use a timer or a thread to clear watch dog continually

Timer1

{

hid_ClearWD(hDevice);

}

If the program doesn’t clean the watch dog within 60s (system crashed or program error), the USB device will

reset itself and each channel returns its original state.

 22

10. Using the Dynamic Industrial Interface with different programming languages

This chapter provides an overview about how to best utilize the Dynamic Industrial Interface in various

programming languages.

If you experience difficulties calling the Dynamic Industrial Interface functions from your programming

language, or are using a programming language not covered in this documentation, please feel free to visit our

web-site, to which we will post updated information regarding DII programming issues. You may also contact our

technical support through our website: www.decision.com.tw

10.1. C++

Since the DII DLL was developed using C++, you may easily use it to access Industrial I/O devices.

For this purpose, a C++ header file ("USBDII.h") as well as an import library ("USBDII.lib") are being shipped

with the interface library. Make sure that you have installed the development release, not the retail release, which

does not include support programming files. In your C/C++ source code files, just include the "USBDII.h" include

file, then you can use any of the functions provided by the USBDII DLL. Be sure to include the import library

"USBDII.lib" during the linking step of your application. So your applications successfully references the actual

interface DLL.

10.2. Visual Basic

Since the Dynamic Industrial Interface is fully 32-bit compliant, only 32-bit versions of Visual Basic

are supported. Specifically, Version 6.0 are tested and supported. If you are using Visual Basic to access any I/O

Devices supported by the USB Dynamic Industrial Interface (USBDII), you can call the USBDII DLL directly.

But before that, you should import them. You may also consult the Visual Basic sample application for more

information about using Visual Basic to access the USB Dynamic Industrial Interface (USBDII).

11. Technical Support and Feedback

We believe that customer input is the most valuable source for creating successful products. We continuously

update and extend the Dynamic Industrial Interface with new functionality, for specific devices, for specific

applications, to meet your specific needs, and provide supportive products around the USBDII. You may also

contact our technical support through our website: www.decision.com.tw

 23

12. Release note

2.0.1.0

Update for supporting USB Industry.

2.0.1.1 2011/11/8

Fix address limitations for USB Industry.

